Section 7: Motor Movements and Audition

> Lexi Franklin 7/22/19

Descending Tracts

- Purpose:
 - Bring motor decisions from higher cortical levels to lower levels of the CNS
- Produces a Motor Response in 2 Ways:
 - Skeletal muscles
 - Autonomic motor
 - Glands
 - Smooth muscle
 - Heart

Motor Cortex

Premotor Area (PMA)

- Purpose
 - Plans the motor activity
- Receives info from the ascending tracts of the CNS
 - Cerebellum
 - Body positions
 - Tendon and muscle tension
 - Sensory cortical regions
- After the plan, the descending fibers will execute it

PMA Neurons

- Do <u>not</u> have a direct connection to the muscles
- Motor programs in the PMA stimulate M1 neurons
- M1 neurons do <u>not</u> have planning capacity

3 Important Parts of the PMA

- Broca's Area
 - Plans speech
 - Connects to the area in M1 associated with speech that controls:
 - Facial expressions, larynx, pharynx, and tongue
 - Broca's aphasia
 - Damage causes speech production errors
- Frontal Eye Field
 - Controls eye movements on the contralateral side
- Premotor Area Homunculus
 - Body mapped with motor purpose
 - Controls bilateral primitive movements
 - Also in M1

Supplementary Motor Area (SMA)

- Primitive movements
- Controls lower body movements
 - Truck control: lower spine and hip movements
- Controls bilateral movement

3 Levels of Control and Corresponding Brain Regions

• Strategy

- Plans the movement/goal
- Brain regions: cortex and basal ganglia
- Tactics
 - Controls muscle sequences to execute the goal
 - Brain regions: motor cortex and cerebellum
- Execution
 - Adjusts posture and movement to achieve the goal
 - Brain regions: brain stem and spinal cord

Pyramidal Decussation Stop 1: Layer 5 of Cortex

Pyramidal Decussation Stop 2: Internal Capsule

Pyramidal Decussation Stop 3: Midbrain

Pyramidal Decussation Stop 4: Pons

Pyramidal Decussation Stop 5: Medulla

Two Tracts in the Spinal Cord

- Dorsal Lateral Corticospinal
 Tract
 - Made up of fibers that cross in the pyramids of the medulla
 - "Decussation of the pyramids"
 - Controls further away, distal skeletal muscles
- Ventral Corticospinal Tract
 - Made up of fibers that do <u>not</u> cross in the medulla
 - Instead cross in the spinal cord
 - Controls closer, axial & truncal muscles

Audition

Sound Waves

- Range: 20 Hz to 20,000 Hz
 - Units: Hertz (HZ) -> cycles per second
- Pitch/Frequency
 - High pitch = high frequency
- Intensity/Amplitude
 - High intensity is louder

Outer Ear

• Purpose:

- Collect sounds
- Orientation
- Localization
- Parts:
 - Pinna: individually distinct outer ear
 - Auditory canal: channel where molecules move and ink to the eardrum

Middle Ear

- Tympanic Membrane
 - Also called the eardrum
 - Connects to the ossicles
- Ossicles
 - Made up of 3 bones: malleus, incus, and stapes
 - Transfers the movement of the tympanic membrane to the oval window
 - $\circ \qquad \text{Amplifies the force of the sound} \\$
 - Need to convert the sound energy into a more powerful signal since the cochlear fluid is harder to vibrate than the air molecules

Inner Ear: Cochlea

- Fluid filled chambers:
 - Scala vestibuli
 - Scala media
 - Scala tympani
- Membranes: Reissner's and Basilar
- Types of fluids:
 - Perilymph
 - Endolymph
- Purpose:
 - Converts sound to neural signals

Place Coding

- Base of the Basilar Membrane
 - Closest to the oval window
 - Narrow and stiff
 - Moved most by high frequencies
- Apex of the Basilar Membrane
 - Far end of the cochlea
 - Wide and floppy
 - Moved most by low frequencies

Organ of Corti Anatomy

- In the scala media
- Hair cells between 2 membranes
 - Tectorial membrane on top
 - Basilar membrane on bottom
- Hair Cells
 - Depolarize or hyperpolarize depending on which direction the cilia bend
 - As the basilar membrane moves from the sound waves, the cilia bend
 - Inner Hair Cells
 - Divergent connections
 - For details
 - Outer Hair Cells
 - Act as cochlear amplifiers
 - Convergent connection

Transduction of Hair Cells

- Basilar membrane bends the cilia
 - Tip links stretch and open the K+ channels
 - Hair cell depolarizes when K+ enters the cell
- Ca++ channels then open which causes the release of glutamate
- Receptors on the spiral ganglion receive the signal

